3.321 \(\int \frac {(f+g x^2) \log (c (d+e x^2)^p)}{x^4} \, dx\)

Optimal. Leaf size=108 \[ -\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}-\frac {2 e^{3/2} f p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}-\frac {2 e f p}{3 d x}+\frac {2 \sqrt {e} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}} \]

[Out]

-2/3*e*f*p/d/x-2/3*e^(3/2)*f*p*arctan(x*e^(1/2)/d^(1/2))/d^(3/2)-1/3*f*ln(c*(e*x^2+d)^p)/x^3-g*ln(c*(e*x^2+d)^
p)/x+2*g*p*arctan(x*e^(1/2)/d^(1/2))*e^(1/2)/d^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2476, 2455, 325, 205} \[ -\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}-\frac {2 e^{3/2} f p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}-\frac {2 e f p}{3 d x}+\frac {2 \sqrt {e} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}} \]

Antiderivative was successfully verified.

[In]

Int[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x^4,x]

[Out]

(-2*e*f*p)/(3*d*x) - (2*e^(3/2)*f*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(3*d^(3/2)) + (2*Sqrt[e]*g*p*ArcTan[(Sqrt[e]*
x)/Sqrt[d]])/Sqrt[d] - (f*Log[c*(d + e*x^2)^p])/(3*x^3) - (g*Log[c*(d + e*x^2)^p])/x

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2455

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[((f*x)^(m
+ 1)*(a + b*Log[c*(d + e*x^n)^p]))/(f*(m + 1)), x] - Dist[(b*e*n*p)/(f*(m + 1)), Int[(x^(n - 1)*(f*x)^(m + 1))
/(d + e*x^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]

Rule 2476

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] && IntegerQ[s]

Rubi steps

\begin {align*} \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x^4} \, dx &=\int \left (\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{x^4}+\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x^2}\right ) \, dx\\ &=f \int \frac {\log \left (c \left (d+e x^2\right )^p\right )}{x^4} \, dx+g \int \frac {\log \left (c \left (d+e x^2\right )^p\right )}{x^2} \, dx\\ &=-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}+\frac {1}{3} (2 e f p) \int \frac {1}{x^2 \left (d+e x^2\right )} \, dx+(2 e g p) \int \frac {1}{d+e x^2} \, dx\\ &=-\frac {2 e f p}{3 d x}+\frac {2 \sqrt {e} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}-\frac {\left (2 e^2 f p\right ) \int \frac {1}{d+e x^2} \, dx}{3 d}\\ &=-\frac {2 e f p}{3 d x}-\frac {2 e^{3/2} f p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}+\frac {2 \sqrt {e} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}}-\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 96, normalized size = 0.89 \[ -\frac {f \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {g \log \left (c \left (d+e x^2\right )^p\right )}{x}-\frac {2 e f p \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};-\frac {e x^2}{d}\right )}{3 d x}+\frac {2 \sqrt {e} g p \tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d}} \]

Antiderivative was successfully verified.

[In]

Integrate[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x^4,x]

[Out]

(2*Sqrt[e]*g*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[d] - (2*e*f*p*Hypergeometric2F1[-1/2, 1, 1/2, -((e*x^2)/d)])/
(3*d*x) - (f*Log[c*(d + e*x^2)^p])/(3*x^3) - (g*Log[c*(d + e*x^2)^p])/x

________________________________________________________________________________________

fricas [A]  time = 0.80, size = 191, normalized size = 1.77 \[ \left [-\frac {{\left (e f - 3 \, d g\right )} p x^{3} \sqrt {-\frac {e}{d}} \log \left (\frac {e x^{2} + 2 \, d x \sqrt {-\frac {e}{d}} - d}{e x^{2} + d}\right ) + 2 \, e f p x^{2} + {\left (3 \, d g p x^{2} + d f p\right )} \log \left (e x^{2} + d\right ) + {\left (3 \, d g x^{2} + d f\right )} \log \relax (c)}{3 \, d x^{3}}, -\frac {2 \, {\left (e f - 3 \, d g\right )} p x^{3} \sqrt {\frac {e}{d}} \arctan \left (x \sqrt {\frac {e}{d}}\right ) + 2 \, e f p x^{2} + {\left (3 \, d g p x^{2} + d f p\right )} \log \left (e x^{2} + d\right ) + {\left (3 \, d g x^{2} + d f\right )} \log \relax (c)}{3 \, d x^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^4,x, algorithm="fricas")

[Out]

[-1/3*((e*f - 3*d*g)*p*x^3*sqrt(-e/d)*log((e*x^2 + 2*d*x*sqrt(-e/d) - d)/(e*x^2 + d)) + 2*e*f*p*x^2 + (3*d*g*p
*x^2 + d*f*p)*log(e*x^2 + d) + (3*d*g*x^2 + d*f)*log(c))/(d*x^3), -1/3*(2*(e*f - 3*d*g)*p*x^3*sqrt(e/d)*arctan
(x*sqrt(e/d)) + 2*e*f*p*x^2 + (3*d*g*p*x^2 + d*f*p)*log(e*x^2 + d) + (3*d*g*x^2 + d*f)*log(c))/(d*x^3)]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 92, normalized size = 0.85 \[ \frac {2 \, {\left (3 \, d g p e - f p e^{2}\right )} \arctan \left (\frac {x e^{\frac {1}{2}}}{\sqrt {d}}\right ) e^{\left (-\frac {1}{2}\right )}}{3 \, d^{\frac {3}{2}}} - \frac {3 \, d g p x^{2} \log \left (x^{2} e + d\right ) + 2 \, f p x^{2} e + 3 \, d g x^{2} \log \relax (c) + d f p \log \left (x^{2} e + d\right ) + d f \log \relax (c)}{3 \, d x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^4,x, algorithm="giac")

[Out]

2/3*(3*d*g*p*e - f*p*e^2)*arctan(x*e^(1/2)/sqrt(d))*e^(-1/2)/d^(3/2) - 1/3*(3*d*g*p*x^2*log(x^2*e + d) + 2*f*p
*x^2*e + 3*d*g*x^2*log(c) + d*f*p*log(x^2*e + d) + d*f*log(c))/(d*x^3)

________________________________________________________________________________________

maple [C]  time = 0.66, size = 430, normalized size = 3.98 \[ -\frac {\left (3 g \,x^{2}+f \right ) \ln \left (\left (e \,x^{2}+d \right )^{p}\right )}{3 x^{3}}+\frac {3 i \pi d g \,x^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )-3 i \pi d g \,x^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}-3 i \pi d g \,x^{2} \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}+3 i \pi d g \,x^{2} \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{3}+i \pi d f \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )-i \pi d f \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}-i \pi d f \,\mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}+i \pi d f \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{3}-6 d g \,x^{2} \ln \relax (c )+2 d \,x^{3} \RootOf \left (9 d^{2} e \,g^{2} p^{2}-6 d \,e^{2} f g \,p^{2}+e^{3} f^{2} p^{2}+d^{3} \textit {\_Z}^{2}\right ) \ln \left (\left (-3 d^{3} g p +d^{2} e f p \right ) \RootOf \left (9 d^{2} e \,g^{2} p^{2}-6 d \,e^{2} f g \,p^{2}+e^{3} f^{2} p^{2}+d^{3} \textit {\_Z}^{2}\right )+\left (18 d^{2} e \,g^{2} p^{2}-12 d \,e^{2} f g \,p^{2}+2 e^{3} f^{2} p^{2}+3 \RootOf \left (9 d^{2} e \,g^{2} p^{2}-6 d \,e^{2} f g \,p^{2}+e^{3} f^{2} p^{2}+d^{3} \textit {\_Z}^{2}\right )^{2} d^{3}\right ) x \right )-4 e f p \,x^{2}-2 d f \ln \relax (c )}{6 d \,x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x^2+f)*ln(c*(e*x^2+d)^p)/x^4,x)

[Out]

-1/3*(3*g*x^2+f)/x^3*ln((e*x^2+d)^p)+1/6*(-3*I*Pi*d*g*x^2*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)^2+3*I*Pi*d
*g*x^2*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)*csgn(I*c)+3*I*Pi*d*g*x^2*csgn(I*c*(e*x^2+d)^p)^3-3*I*Pi*d*g*x
^2*csgn(I*c*(e*x^2+d)^p)^2*csgn(I*c)-I*Pi*d*f*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)^2+I*Pi*d*f*csgn(I*(e*x
^2+d)^p)*csgn(I*c*(e*x^2+d)^p)*csgn(I*c)+I*Pi*d*f*csgn(I*c*(e*x^2+d)^p)^3-I*Pi*d*f*csgn(I*c*(e*x^2+d)^p)^2*csg
n(I*c)-6*ln(c)*d*g*x^2+2*sum(_R*ln((18*d^2*e*g^2*p^2-12*d*e^2*f*g*p^2+2*e^3*f^2*p^2+3*_R^2*d^3)*x+(-3*d^3*g*p+
d^2*e*f*p)*_R),_R=RootOf(9*d^2*e*g^2*p^2-6*d*e^2*f*g*p^2+e^3*f^2*p^2+_Z^2*d^3))*d*x^3-4*e*f*p*x^2-2*ln(c)*d*f)
/d/x^3

________________________________________________________________________________________

maxima [A]  time = 0.99, size = 65, normalized size = 0.60 \[ -\frac {2}{3} \, e p {\left (\frac {{\left (e f - 3 \, d g\right )} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e} d} + \frac {f}{d x}\right )} - \frac {{\left (3 \, g x^{2} + f\right )} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )}{3 \, x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x^4,x, algorithm="maxima")

[Out]

-2/3*e*p*((e*f - 3*d*g)*arctan(e*x/sqrt(d*e))/(sqrt(d*e)*d) + f/(d*x)) - 1/3*(3*g*x^2 + f)*log((e*x^2 + d)^p*c
)/x^3

________________________________________________________________________________________

mupad [B]  time = 0.37, size = 65, normalized size = 0.60 \[ \frac {2\,\sqrt {e}\,p\,\mathrm {atan}\left (\frac {\sqrt {e}\,x}{\sqrt {d}}\right )\,\left (3\,d\,g-e\,f\right )}{3\,d^{3/2}}-\frac {2\,e\,f\,p}{3\,d\,x}-\frac {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )\,\left (g\,x^2+\frac {f}{3}\right )}{x^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(c*(d + e*x^2)^p)*(f + g*x^2))/x^4,x)

[Out]

(2*e^(1/2)*p*atan((e^(1/2)*x)/d^(1/2))*(3*d*g - e*f))/(3*d^(3/2)) - (2*e*f*p)/(3*d*x) - (log(c*(d + e*x^2)^p)*
(f/3 + g*x^2))/x^3

________________________________________________________________________________________

sympy [A]  time = 105.07, size = 1454, normalized size = 13.46 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x**2+f)*ln(c*(e*x**2+d)**p)/x**4,x)

[Out]

Piecewise(((-f/(3*x**3) - g/x)*log(0**p*c), Eq(d, 0) & Eq(e, 0)), ((-f/(3*x**3) - g/x)*log(c*d**p), Eq(e, 0)),
 (-f*p*log(e)/(3*x**3) - 2*f*p*log(x)/(3*x**3) - 2*f*p/(9*x**3) - f*log(c)/(3*x**3) - g*p*log(e)/x - 2*g*p*log
(x)/x - 2*g*p/x - g*log(c)/x, Eq(d, 0)), (-I*d**(5/2)*f*p*sqrt(1/e)*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/
e) + 3*I*d**(3/2)*e*x**5*sqrt(1/e)) - I*d**(5/2)*f*sqrt(1/e)*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e) + 3*I*d**(3/2
)*e*x**5*sqrt(1/e)) - 3*I*d**(5/2)*g*p*x**2*sqrt(1/e)*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e) + 3*I*d**(3
/2)*e*x**5*sqrt(1/e)) - 3*I*d**(5/2)*g*x**2*sqrt(1/e)*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e) + 3*I*d**(3/2)*e*x**
5*sqrt(1/e)) - I*d**(3/2)*f*p*x**2*sqrt(1/e)*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**
5*sqrt(1/e)) - 2*I*d**(3/2)*f*p*x**2*sqrt(1/e)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) -
 I*d**(3/2)*f*x**2*sqrt(1/e)*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 3*I*d**(3/
2)*g*p*x**4*sqrt(1/e)*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 3*I*d**(
3/2)*g*x**4*sqrt(1/e)*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 2*I*sqrt(d)*e*f*p
*x**4*sqrt(1/e)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 3*d**2*g*p*x**3*log(d + e*x**2
)/(3*I*d**(5/2)*x**3*sqrt(1/e) + 3*I*d**(3/2)*e*x**5*sqrt(1/e)) + 6*d**2*g*p*x**3*log(-I*sqrt(d)*sqrt(1/e) + x
)/(3*I*d**(5/2)*x**3*sqrt(1/e) + 3*I*d**(3/2)*e*x**5*sqrt(1/e)) - 3*d**2*g*x**3*log(c)/(3*I*d**(5/2)*x**3*sqrt
(1/e) + 3*I*d**(3/2)*e*x**5*sqrt(1/e)) + d*f*p*x**3*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3
/2)*x**5*sqrt(1/e)) - 2*d*f*p*x**3*log(-I*sqrt(d)*sqrt(1/e) + x)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)
*x**5*sqrt(1/e)) + d*f*x**3*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 3*d*g*p*x**
5*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) + 6*d*g*p*x**5*log(-I*sqrt(d)*
sqrt(1/e) + x)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) - 3*d*g*x**5*log(c)/(3*I*d**(5/2)
*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)) + e*f*p*x**5*log(d + e*x**2)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e +
 3*I*d**(3/2)*x**5*sqrt(1/e)) - 2*e*f*p*x**5*log(-I*sqrt(d)*sqrt(1/e) + x)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*
I*d**(3/2)*x**5*sqrt(1/e)) + e*f*x**5*log(c)/(3*I*d**(5/2)*x**3*sqrt(1/e)/e + 3*I*d**(3/2)*x**5*sqrt(1/e)), Tr
ue))

________________________________________________________________________________________